Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 3, 2026
-
Free, publicly-accessible full text available April 28, 2026
-
Free, publicly-accessible full text available March 30, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available November 1, 2025
-
Free, publicly-accessible full text available December 9, 2025
-
Fine-grained network telemetry is becoming a modern datacenter standard and is the basis of essential applications such as congestion control, load balancing, and advanced troubleshooting. As network size increases and telemetry gets more fine-grained, there is a tremendous growth in the amount of data needed to be reported from switches to collectors to enable network-wide view. As a consequence, it is progressively hard to scale data collection systems. We introduce Direct Telemetry Access (DTA), a solution optimized for aggregating and moving hundreds of millions of reports per second from switches into queryable data structures in collectors' memory. DTA is lightweight and it is able to greatly reduce overheads at collectors. DTA is built on top of RDMA, and we propose novel and expressive reporting primitives to allow easy integration with existing state-of-the-art telemetry mechanisms such as INT or Marple. We show that DTA significantly improves telemetry collection rates. For example, when used with INT, it can collect and aggregate over 400M reports per second with a single server, improving over the Atomic MultiLog by up to 16x.more » « less
-
Virtual switches, used for end-host networking, drop packets when the receiving application is not fast enough to consume them. This is called the slow receiver problem, and it is important because packet loss hurts tail communication latency and wastes CPU cycles, resulting in application-level performance degradation. Further, solving this problem is challenging because application throughput is highly variable over short timescales as it depends on workload, memory contention, and OS thread scheduling. This paper presents Backdraft, a new lossless virtual switch that addresses the slow receiver problem by combining three new components: (1) Dynamic Per-Flow Queuing (DPFQ) to prevent HOL blocking and provide on-demand memory usage; (2) Doorbell queues to reduce CPU overheads; (3) A new overlay network to avoid congestion spreading. We implemented Backdraft on top of BESS and conducted experiments with real applications on a 100 Gbps cluster with both DCTCP and Homa, a state-of-the-art congestion control scheme. We show that an application with Backdraft can achieve up to 20x lower tail latency at the 99th percentile.more » « less
An official website of the United States government

Full Text Available